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Abstract: This paper presents a novel methodology for evolving fuzzy identification of nonlinear systems in state
space based on Hammerstein models. The nonlinear static characteristic is approximated by an evolving Takagi-
Sugeno fuzzy model and the linear dynamics by a state space model. The recursive estimation of the linear model in
state space is performed based on the system Markov parameters applied to the algorithm of minimum realization
ERA. Computational results illustrate the effectiveness of the proposed method in the online identification of
nonlinear systems.
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1 Introduction
Modern systems are each day more complex and de-
mand more acurace of the models. New development
of modeling techniques increase its effort to incorpo-
rate issues like nonlinearities, uncertainties and tem-
poral variation. However, there is not standard and
unified mathematical method to describe the complex
behavior of processes [1] [2] [3].

Several methods to identify systems and their
nonlinearities are currently studied [6] [13]. Block-
oriented models are widely used to describe nonlinear
systems, and are successfully applied to various prob-
lems [5] [7]. Hammerstein model, a typical block ori-
ented model, consists of a static nonlinear block cas-
cading with a linear dynamic block [8]. This type of
model has been proven as an efficient tool in the mod-
eling of biological, chemical and electrical nonlinear
systems [9].

Takagi-Sugeno (TS) fuzzy systems have been
shown to be efficient in modeling the complexities
of many systems. In [4], a new modeling method-
ology based on evolving Takagi-Sugeno neuro-fuzzy
network used to forecast seasonal time series, is pro-
posed. In [10], an algorithm for obtaining TS fuzzy
models based on ant colony optimization algorithm,
is presented. In [11], an extension of the FLEXFIS al-
gorithm is proposed for the construction of more gen-
eralized, but less complex, fuzzy models, is proposed

A wide variety of methods have been developed
to identify Hammerstein model. In [12] a methodol-
ogy for identification of Hammerstein models in state

space is presented. The static nonlinearity is mod-
eled by polynomial parameterization. This approach
requires a priori knowledge of the polynomial order.
Moreover, the signal applied for identification is dif-
ficult to reproduce experimentally. In [13], a batch
identification method of Hammerstein models based
on correlation analysis, is proposed. This method uses
a neuro-fuzzy network to identify the nonlinear static
characteristic and the linear part is approximated by
an autoregressive model. For the implementation of
this technique is also necessary to apply two separate
special signals.

This paper presents a novel methodology for
evolving identification of nonlinear systems in state
space based in Hammerstein models. The main con-
tributions of the proposed methodology as the follow-
ing:

• Is does not depend on the use of specifics signals
for static nonlinearity estimation and linear dy-
namics as in others methodologies from the liter-
ature;

• The application of an evolving Takagi-Sugeno
fuzzy system. These models are able to adapt
their structure online according to data;

• The new evolving fuzzy modeling algorithm pro-
duces models in state space of minimum order,
based on system Markov parameters.
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2 State Space Hammerstein Model-
ing: Formulation

The state space Hammerstein model, as shown in
Fig. 1, consist of the cascade connection of two
blocks: the first describes a nonlinear static charac-
teristic and the second describes the state space linear
dynamics [18].

Figure 1: Hammerstein model in state space.

This type of block-oriented model is formulated
as follow:

wk = f (uk) (1)

xk+1 = Axk +Bwk

yk = Cxk +Dwk
(2)

where uk ∈ IRm is the input vector, yk ∈ IRp is
the output vector and xk ∈ IRn is the state vector.
wk ∈ IRm is the vector that represents the unknown
internal variable and f (uk) is the static nonlinearity
of the Hammerstein model. The parameters of the
linear dynamic block in state space are described by
matrices A ∈ IRn×n, B ∈ IRn×m, C ∈ IRp×n and
D ∈ IRp×m.

2.1 Static Nonlinearity Parameterization
The nonlinear static function, f (uk), is approximated
by a TS fuzzy inference system, characterized by a set
of fuzzy rules of type IF-THEN, whose structure is
given by:

Ri : IF x̃1,k IS Qij|x̃1,k AND...

. . . AND x̃l,k IS Qij|x̃l,k
THEN w̃i

k = (Ei(I −Gi)−1H i + F i)uk

(3)

with i = [1, L], where L is the number of rules,
x̃k = [x̃1,k x̃2,k . . . x̃l,k] ∈ IRl is the vector that
contains the antecedent linguistic variables at the k-
th sampling time. The linguistic variable x̃t,k, with
t = [1, l], belongs to the fuzzy set Qij|x̃t,k with a

truth value µiQj|x̃t,k
defined by a membership func-

tion µix̃t,k : R → [0, 1]. Gi ∈ IRs×s, H i ∈ IRs×m,
Ei ∈ IRq×s and F i ∈ IRp×m are the parameters of the
i-th local linear model of the consequent, uk ∈ IRm is
the input vector and the w̃i

k ∈ IRm is the output vector
of the i-th local linear model.

The truth value of a certain point for the i-th fuzzy
set in the j-th universe of discourse can be described
by a gaussian, given by:

µiQj|x̃j,k
(x̃j,k) = e

−
(x̃j,k − x̃i∗j,k)2

2(σij,k)
2 (4)

where x̃i∗j,k is the focal point that represents the i-th
fuzzy set and σij,k is the gaussian variance of the j-th
input variable of the i-th rule.

The truth value hi for the complete rule i is given
by:

hi(x̃k) = µiQj|x̃∗
1,k

? µiQj|x̃∗
2,k

? · · · ? µiQj|x̃∗
l,k

(5)

where (?) is the operator that represents the product
t-norm. The normalized truth value for the rule i is
defined by

γi(x̃k) =
hi(x̃k)∑L
r=1 h

r(x̃k)
,
L∑
i=1

γi(x̃k) = 1 (6)

The response of the TS fuzzy model consists in
a weighted sum of the consequent functions, i.e., a
convex combination of the local functions w̃i

k

wk =
L∑
i=1

γi(x̃k)w̃i
k (7)

2.1.1 Evolving Approach for Antecedent Estima-
tion

The evolving algorithm applied in the fuzzy rules esti-
mation is based on the FLEXFIS algorithm [14]. The
recursive update of the clusters centers, is defined by:

cnewv = coldv + ηv,k
(
x̃k − coldv

)
(8)

where cv, called winning cluster, is the cluster closest
to the sample x̃k according to Euclidean norm, ηv,k
is the learning gain at the k-th sampling time. The
recursive computation of ηv,k, is given by:

ηv,k =
gs
Sv,k

(9)
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where the Sv,k is the support (number of data points
belonging to the winning cluster, at the k-th sampling
time) and gs is a constant parameter. A new rule is
created when the following condition is true:

||x̃k − cv||A ≥ ρ E x̃k is not faulty (10)

where A represents the Euclidean norm. The moni-
toring parameter ρ, that decides between creating of a
new rule and updating an existing rule, is given by:

ρ = fac ∗
√
l√
2

(11)

where fac ∈ [0, 1] and l is the x̃k vector size. The
parameter ρ also ensures that a cluster center is never
initialized too far from a new data clustering.

To avoid clusters being kept in regions of low rep-
resentativity and minimizing the effects of outliers,
the following condition is used to eliminate rules with
low support value:

IF Sik < 5 AND k > Ii∗ + 15
THEN L = L− 1

(12)

where i = [1, L], Sik is the support of the i-th rule in
the k-th sampling time, Ii∗ is the creation instant of
rule. The influence zone of each cluster is defined by
the gaussian variance in (4). The recursive updating
of the variance, is given by:

σnewv,j =

√
(Sv,k−1)(σold

v,j )2+Sv,k(∆cv,j)2+(cnew
v,j −x̃j)2

Sv,k

(13)
where j = [1, l], l is the x̃k vector size, Sv,k is the
support of the winning cluster, ∆cv,j is the distance
between the last position of the winning cluster and
the current position in the j-th dimension.

2.1.2 Recursive Approach Consequent Estima-
tion

The antecedent evolving estimation causes contin-
uous changes in the model structure according to
the arrival of the data. Thus, a recursive strategy of
consequent parameters estimation is implemented.

A. Recursive Estimation of the System Fuzzy Markov
Parameters

Consider a TS fuzzy system in state space, given
by:

Ri : IF x̃1,k IS Qij|x̃1,k AND...

. . . AND x̃l,k IS Qij|x̃l,k

THEN ỹik =

{
zik+1 = Gizik +H iuk

ỹik = Eizik + F iuk

(14)

where zik ∈ IRs is the state vector. The recursive esti-
mation ofGi, H i, Ei and F i is performed by the min-
imum realization fuzzy algorithm based on the system
fuzzy Markov parameters for each rule [16].

It is possible to obtain the system fuzzy Markov
parameters from the observer Markov parameters
[19]. By inserting a state observer in the consequent
of (14) [16], the submodel can be written as:

zik+1 = Ḡizik + H̄ ivk
ỹik = Eizik + F ivk

(15)

where

Ḡi = Gi + ΩiEi (16)

H̄ i = [H i + ΩiF i,−Ωi] (17)

vik = [ uk ỹik ]T (18)

and Ωi ∈ IRp×m is the observer gain of i-th local lin-
ear model.

Solving the equation (15) in function of matri-
ces Ḡi, H̄ i, Ei and F i and of the vectors uk and yk,
where k indicates that are used samples from instant 0
until k, and zi0 = 0, obtain the following relation:

ỹik =
k∑
j=1

Ei(Ḡi)j−1H̄ ivik−j + F iuk (19)

Because the state observer presence, it has
(Ḡi)qf ≈ 0. Thus, (19) can be rewritten as:

ỹik =
qf∑
j=1

Ȳ i
k,jv

i
k−j + F iuk (20)

where Ȳ i
k,j = Ei(Ḡi)j−1H̄ i is the j-th observer

Markov parameter and Ȳ i
k,0 = F i.

Rewritten (20) as a matrix operation, results:

Υ̃i
k = Θi

kΦ
i
k (21)

where Θi
k = [F ik Ȳ i

k,1 . . . Ȳ i
k,qf

] is the observer
Markov parameters vector of the i-th rule. The re-
gressors matrix is given by:
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Φi
k =


(φi(1))T

√
γi(x̃(1))

(φi(2))T
√
γi(x̃(2))

...
(φi(N))T

√
γi(x̃(N))

 (22)

with φik = [uTk vTk−1 . . . vTk−qf ]T , and the vector
output is given by:

Υ̃i
k =


ỹi(1)

√
γi(x̃(1))

ỹi(2)
√
γi(x̃(2))
...

ỹi(N)
√
γi(x̃(N))

 (23)

where N is the number of samples until the instant k.
Applying the local learning approach [15] and

solving the equation (21) by the batch weighted least
squares to generate the initialization for recursive ap-
proach, results:

(Θi
k)
T = (Φi(Φi)T )−1(Φi)(Υ̃i

k)
T (24)

The recursive estimation of the observer Markov
parameters, based in input-output data, is done by
the local learning approach of the recursive fuzzily
weighted least squares algorithm [15], given by:

(Θi
k+1)T = (Θi

k)T + (Γk+1)T ((yk+1)T − (φi
k+1) (Θi

k)T )
(25)

(Γk+1)T =
(P ik)

T (φik+1)T

1

γi(x̃k+1)
+ (φik+1)(P ik)

T (φik+1)T

(26)

(P ik+1)T = (I − (Γk+1)T (φik+1))(P ik)
T (27)

where P ik is the covariance matrix.
Rearranging the r-th observer Markov parameter

of the i-th rule in the k-th sampling time [19], results:

Ȳ i
k,r = [Ȳ i,1

k,r , − Ȳ
i,2
k,r ] (28)

The system Markov parameters can be recursively es-
timated using the following equations [16]:

Y i
k,0 = Ȳ i

k,0 (29)

Y i
k,r = Ȳ i,1

k,r −
r∑
j=1

Ȳ i,2
k,j Y

i
k,r−1, r = [1, qf ] (30)

Y i
k,r = −

qf∑
j=1

Ȳ i,2
k,j Y

i
k−j , r > qf (31)

where Y i
k,r is the r-th system fuzzy Markov parameter

of the i-th rule in the k-th sampling time.

B. Recursive Estimation of the Consequent Submodels
Matrices.

Since the observer Markov parameters are esti-
mated recursively, the system fuzzy Markov param-
eters are also computed in (29), (30) and (31). The
algorithm to find the matrices Gi, H i, Ei and F i be-
gin with the construction of de fuzzy Hankel matrices
for each local model [17], given by

H i
0 =


Y i

1 Y i
2 . . . Y i

βf

Y i
2 Y i

3 . . . Y i
βf+1

...
...

. . .
...

Y i
αf

Y i
αf+1 . . . Y i

αf+βf−1

 (32)

and

H i
1 =


Y i

2 Y i
3 . . . Y i

βf+1

Y i
3 Y i

4 . . . Y i
βf+2

...
...

. . .
...

Y i
αf+1 Y i

αf+2 . . . Y i
αf+βf

 (33)

where αf and βf are integers restricted by the condi-
tion αfm ≤ βfp, m and p is the number of inputs and
outputs, respectively.

The order of submodels is defined by the rank of
their respective Hankel matrices, that is, the signifi-
cant singular values number of H i

0. The next step to
obtain of the parameters is the application of the sin-
gular value decomposition (SVD) in (32), given by:

H i
0 = RiΣi(Si)T (34)

where

Σi =

[
Σi
s 0

0 0

]
(35)

and

Σi
s = diag

[
δi1, δi2, . . . , δ

i
s

]
(36)

is a diagonal matrix composed of the most significant
singular values. The matrices Ris and Sis are formed
by the first s columns of the matricesR and S, respec-
tively. Thus, the Hankel matrix H i

0 can be rewritten
as:
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H i
0 = RisΣ

i
s(S

i
s)
T (37)

The local submodels parameters are obtained as
follows:

Gi = (Σi
s)
−1/2(Ris)

T (H i
1)(Sis)(Σ

i
s)
−1/2 (38)

H i = first s collumns of (Σi
s)

1/2(Sis)
T (39)

Ei = first s rows of (Ris)(Σ
i
s)

1/2 (40)

F i = Y i
0 (41)

Finally, the approximation of the static nonlin-
earity is given by the following fuzzy model resulted
from the evolving clustering of experimental data:

wk =
L∑
i=1

γi(x̃k)(E
i(I −Gi)H i + F i)uk (42)

2.2 Linear Dynamics Parameterization
Since the wk is estimated in the parameters of the
linear dynamic model can be estimated recursively as
described in the sequel.

A. Recursive Estimation of the Linear System Markov
Parameters

Considering the model presented in (2) and
adding a state observer, results:

xk+1 = Āxk + B̄iwk

yk = Cxk +Dwk
(43)

where

Ā = A+MC (44)

B̄ = [B +MD,−M ] (45)

τk = [ wk yk ]T (46)

and M ∈ IRp×m is the observer gain.
The solving of equation (43) in terms of matrices

A, B, C and D, and of the vectors wk and yk, where
k indicates that are used samples from instant 0 until
k, and x0 = 0, results:

yk =
k∑
j=1

C(Ā)j−1B̄τk−j +Dwk (47)

The presence of state observer causes (Ā)ql ≈ 0,
where ql is a integer. Thus, (47) can be rewritten as:

yk =
ql∑
j=1

ψ̄k,jτk−j +Dwk (48)

where ψ̄k,j = C(Ā)j−1B̄ is the j-th observer Markov
parameter and ψ̄k,0 = Dk.

Writing (20) in the matrix form, results:

Υk = Ψ̄kWk (49)

where, Υk = [yql+1 yql+2 . . . yk], Ψ̄k =
[Dk ψ̄k,1 . . . ψ̄k,ql ] is the observer Markov parame-
ters vector and Wk is the regressors matrix, given by:

Wk =


wql+1 wql+2 . . . wk−1

τql τql+1 . . . τk−2
...

...
. . .

...
τ1 τ2 . . . τk−ql−1

 (50)

The initialization of recursive approach is done by
least square, as follows [19]:

Ψ̄k = ΥkW
T
k [WkW

T
k ]−1 (51)

The recursive estimation of the observer Markov
parameters, is done applying the recursive least square
[16], as follow:

Z̃ =
πTk+1P̃k

λl + πTk−1P̃kπk+1

(52)

Ψ̄k+1 = Ψ̄k + [yk+1 − Ψ̄kπk+1]Z̃ (53)

P̃k+1 = λ−1
l P̃k[I − πk+1Z̃] (54)

where Z̃ is a gain vector, P̃k is the covariance matrix
and πk = [wT

k τTk−1 . . . τTk−ql ]
T is a vector regres-

sors.
Thus, with the recursive observer Markov param-

eters, the system Markov parameters are given by:

ψk,0 = ψ̄k,0 (55)

ψk,r = ψ̄
(1)
k,r −

r∑
j=1

ψ̄
(2)
k,j ψk,r−1, r = [1, ql] (56)
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ψk,r = −
ql∑
j=1

ψ̄
(2)
k,j ψk−j , r > ql (57)

where ψ̄k,j = [ψ̄
(1)
k,j , ψ̄

(2)
k,j ] [16] and ψk,r is the r-th

linear system Markov parameter in the k-th sampling
time.

B. Recursive Estimation of the Linear Block Matrices.

The Hankel matrix to the linear dynamics, is
given by:

Π0 =


ψ1 ψ2 . . . ψβl
ψ2 ψ3 . . . ψβl+1
...

...
. . .

...
ψαl

ψαl+1 . . . ψαl+βl−1

 (58)

Π1 =


ψ2 ψ3 . . . ψβl+1

ψ3 ψ4 . . . ψβl+2
...

...
. . .

...
ψαl+1 ψαl+2 . . . ψαl+β

 (59)

where αl and βl are integers restricts by αlm ≤ βlp
[17].

The next step for linear system minimum realiza-
tion is to apply SVD in (58), given by:

Π0 = Λ∆ΞT (60)

Choosing the n significant singular values of Π0,
(60) is rewritten by:

Π0 = Λn∆nΞTn (61)

where ∆n ∈ IRn×n is a diagonal matrix and the ma-
trices Λn and Ξn are the n first columns of Λ and Ξ,
respectively.

Finally, the state matrices of the linear system are
computed recursively, by:

A = (∆n)−1/2(Λn)T (Π1)(Ξn)(∆n)−1/2 (62)

B = first n collumns of (∆n)1/2(Ξn)T (63)

C = first n rows of (Λn)(∆n)1/2 (64)

D = ψ0 (65)

3 Computational Results
To demonstrate the efficiency of the proposed method-
ology, it is considered in a dynamic system with one
input and one output, whose static nonlinearity is a
complex discontinuous function. The benchmark is
applied in [13] and given by:

wk =


2 tanh(2uk) uk ≤ 1.5

−2
euk − 1

euk + 1
uk > 1.5

(66)

yk = 0.8yk−1 + 0.2wk−1 (67)

where uk is the input, wk is the unknown intermediate
signal and yk is the output.

The criteria used to validate obtained model are
the mean square error (MSE), given by:

MSE =
1

N

N∑
k=1

(yk − ŷk)2 (68)

where N is the number of samples, yk and ŷk denote
the real and estimated outputs, respectively, and the
best fit (FIT), given by:

FIT =

(
1− ||y − ŷ||
||y − ymean||

)
× 100% (69)

where y and ŷ denote the vectors containing the real
and the estimated outputs, ymeans is the vector con-
taining the mean value of y and ||.|| is the vector norm.

The performance of the proposed methodology is
compared with two different methodologies: one ap-
proach based on polynomial approximation and an-
other based an a neuro-fuzzy network [13]. For esti-
mation of the evolving fuzzy Hammerstein model, a
random multi-step input signal with uniform distribu-
tion between [0, 5] is applied. The data set used for
training is illustrated in Fig. 2. The first 200 samples
of the training data set are used to initiate the algo-
rithm.

3.1 Evolving Parametric Estimation of Static
Nonlinearity

The antecedent parameters estimation of the evolv-
ing Takagi-Sugeno fuzzy model is computed as for-
mulated in the section 2.1.1. The following design
parameters are employed: fac = 0.03 (manages the
number of clusters evolved), gs = 0.04 (is the ini-
tial learning gain that guides the degree of shifting
the centers and is responsible for a convergence of
the cluster center). The clusters number evolution for
the training data set applied is presented in the Fig. 3,
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Sample T ime
0 100 200 300 400 500 600 700 800 900 1000

u

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

(a)

Sample T ime
0 100 200 300 400 500 600 700 800 900 1000

y

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

(b)

Figure 2: Training data set. (a) input data; (b) output
data.

where it can be seen that the final model presents 23
rules.

The consequent recursive estimation is performed
by applying the algorithm proposed in the section
2.1.2. The design parameters used in the training
are the following: qf = 1 (is the number of system
Markov parameters), αf = 3 (is the number of rows
of the Hankel matrix) and βf = 7 (is the number of
columns of the Hankel matrix).

The recursively estimated consequent parameters
are presented in Fig. 4, Fig. 5, Fig. 6 and Fig. 7.

3.2 Recursive Parametric Estimation of Lin-
ear Dynamics

For recursive estimation of the linear model parame-
ters, the design parameters are: ql = 2 (number of
linear system Markov parameters), αl = 25 (number
of rows of the Hankel matrix of the linear dynamic

Sample T ime
0 100 200 300 400 500 600 700 800 900 1000

C
lu
s
te
r
s
N
u
m
be
r

0

5

10

15

20

Figure 3: Rules number evolution during training (in-
cluding the first 200 initialization samples of the algo-
rithm).

Sample T ime
0 100 200 300 400 500 600 700 800

G
i

0

0.2

0.4

0.6

0.8

1

Figure 4: Consequent parameters recursive estimation
for static nonlinearity modeling: parameters of matrix
Gi|i=1,...,23.

Sample T ime
0 100 200 300 400 500 600 700 800

H
i

-1

-0.5

0

0.5

1

1.5

Figure 5: Consequent parameters recursive estimation
for static nonlinearity modeling: parameters of matrix
H i|i=1,...,23.
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Sample T ime
0 100 200 300 400 500 600 700 800

E
i
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0.2

0.4

0.6

0.8

1

Figure 6: Consequent parameters recursive estimation
for static nonlinearity modeling: parameters of matrix
Ei|i=1,...,23.

Sample T ime
0 100 200 300 400 500 600 700 800

F
i

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Figure 7: Consequent parameters recursive estimation
for static nonlinearity modeling: parameters of matrix
F i|i=1,...,23.

model), βl = 50 (number of columns of the Hankel
matrix of the linear dynamic model) and λl = 0.98
(forgetting factor for the recursive least squares). The
singular values of the Hankel matrix estimated with
the input-output data set, wk and yk, referring to the
training samples applied in the algorithm initializa-
tion, is shows in Fig. 8. The analysis of the Fig. 8
results in a linear model of order n = 1.

The recursive estimation of the linear dynamic
model parameters, as well as the convergence, the
parametric variation of the matrices A, B, C and D,
are presented in Fig. 9, Fig. 10, Fig. 11 and Fig. 12.

The validation results of evolving fuzzy Hammer-
stein model and its respective error is presented in
Fig. 13. The validation of the static nonlinearity is
illustrated in Fig. 14. The comparison between the
MSEs for both training and validation data obtained
by the proposed algorithm and by the best models of
the other two methods in [13], is presented in Table 1
. The FIT performace indice is also applied. Dur-
ing validation a FIT = 98.8774% is obtained for the
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Figure 8: Singular values of the Hankel matrix of the
linear dynamics.
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Figure 9: Parameters variation of the linear dynamic
model: parameters variation of matrix A.
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Figure 10: Parameters variation of the linear dynamic
model: parameters variation of matrix B.

proposed methodology.
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Figure 11: Parameters variation of the linear dynamic
model: parameters variation of matrix C.

Sample T ime
0 100 200 300 400 500 600 700 800

D

×10-3

-14

-12

-10

-8

-6

-4

-2

0

2

Figure 12: Parameters variation of the linear dynamic
model: parameters variation of matrix D.

4 Conclusion
The novel methodology proposed in this paper is ef-
ficient in identification of systems with complex non-
linearities. The identification of the static nonlinear
block by an evolving TS fuzzy model shows to be sat-
isfactory for estimation of the static nonlinear char-
acteristic in all operations regions of the nonlinear
system, with a smaller number of rules. Moreover,
the proposed method varies the antecedent and conse-
quent structure according experimental data. The re-

Table 1: Comparative analysis for the proposed
methodology.

Model MSE∗ MSE+

Proposed 2.7088× 10−4 9.1415× 10−4

Neuro-fuzzy 5.2323× 10−4 9.9665× 10−4

Polynomial 4.3000× 10−3 7.6000× 10−3

MSE∗ - training.
MSE+ - validation.
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ŷ

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2
actual process
proposed method

(a)

Sample T ime
0 100 200 300 400 500 600 700 800

E
r
r
o
r

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

(b)

Figure 13: Validation result. (a) solid black line: ac-
tual process output y; dashed dotted red line: esti-
mated output by proposed method ŷ. (b) prediction
error.

cursive identification of the linear block, through the
ERA algorithm presented good performance. Thus,
the results presented in this paper show that both non-
linear block and linear block approximation were con-
sidered satisfactory. The comparison analysis the with
methods in [13] shows that the proposed methodology
presents better results with lower number of rules.
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